Jas -> Research-> CS-> 00 -> Languages-> Smalltalk -> ReadingSmalltalk (v3)

Reading Smalltalk

My presentation is based on the way | tackle any language:

1. Examine the character set and tokens
2. Examine the reserved words

3. Examine each unique syntactic form

4. Examine the operator precedence rules
5. Examine each unique semantic form

6. Examine the libraries

SO here goes...

1. Character set and tokens
Standard character set, with twelve special characters: #2.'";()[]

Thetokensare: {identifier} { number} {string} { comment}
{ binaryOperator} {keyword} {specia Token}

Identifiers are the same as you'd expect, except that we use
capitalLettersLikeThis, rather_than_underscores.

Numbers are also as you'd expect.
'Strings’ ‘are enclosed in single quotes.
"Comments" "are enclosed in double quotes”.

Binary operators are composed of one or two characters.

The characters which can form a{ binaryOperator} vary alittle
between implementations, but for the purpose of reading
Smalltalk,

you can assume that any non-alphaNumeric character which is not
in the above list of { special characters} forms a{ binaryOperator} .
For example:

+ isa{binaryOperator}
++ isa{binaryOperator}
>* isa{binaryOperator}
-> isa{binaryOperator}

Page 1 of 14

http://SmalltalkNow.org
mailTo:jas@cruzio.com

A keyword:

SpecialTokens

Jas -> Research-> CS-> 00 -> Languages-> Smalltalk -> ReadingSmalltalk (v3)

isjust an identifier with a colon on the end of it, e.g.
anyldentifierLikeThis: isa{keyword}.

In Smalltalk, a keyword is only specia in the sense that

it forms a“keyword message”. It'sadistinct kind of token
(different from an identifier or astring), but its meaning as
an individual token is not special. Some languages have
specia { keywords} like BEGIN and END, with built-in
meanings - a Smalltalk { keyword} is not this sort of thing.
In Smalltalk, { keyword} is strictly a syntactic form.

are just the special characters, used as
separators for parsing the language.

$ dollarSign

pound

: colon

N caret
. period

' single quote

| vertical stroke

“ double quote

: semicolon

(openParenthesis
) closeParenthesis

Each occurrence precedes (one) character,
any $1 $i $t $e $r $a $I character, (38 too)
i.e. next character isto be taken literally.
Begins an arbitrary #symbol,
or (if attached to aleft parenthesis)
begins a#(literal array).
Ends a keyword:
or begins :aBlockFormalParameter.
“AnswerThisObject (i.e. return this result).
Statement separator.
Between all statements
But (for last statement of a method
or: [the last statement of a block]
) if True: [period isOptional]
‘delimitsa string’
| delimits temporary variable definitions |
and / or
[:block :formal :parameters| ...]
“ delimitsacomment ”
Beginsacascading message send, likethis.
receiver firstMessage
; firstCascadeM essage
; all4SentToSameRecelver
; thirdCascadeM essage.
Begins an expression.
Ends an expression.

[openSquareBracket Beginsablock closure.
] closeSquareBracket Ends ablock closure.

Page 2 of 14

Jas -> Research-> CS-> 00 -> Languages-> Smalltalk -> ReadingSmalltalk (v3)

2. Reserved Words

There arefivereserved words: nil false true self super.
These are all reserved because the compiler, optimizer, and VM know about them.

nil

true

false

self

super

isthe value of any variable which hasn't yet been initialed.

It isalso the value of any variable whose initial value has been
forgotten. It should be used to mean

“l have no idea’

“Has never had avaue’, or

“If it ever had avalue, someone has since asked

that we behave asif it never had one;

therefore - | have noidea’.

It is sometimes incorrectly used for things that
should be NullObjects or ExceptionalValues.

are singleton instances of the classes True and False, respectively.

refers to the object whose class contains the method you are
presently reading, when you are reading one and encounter the
word self. BUT IF the object's class has no such method, you
must be reading the object’ s nearest superclass which does have
such a method.

refers to the same object as self.

(Read that last sentence 100 times, until you accept it asfact,
before moving on.)

So —why would we want to have two names for the samething?
We wouldn’t actually — the two names describe two different search paths.
(A bit hard to follow, until you get used to it). It workslike this:

super 1S the same object as self, but when you try to figure out which
method the object will execute in response to a message being sent to super,
pretend the class you' re reading doesn’t have such amethod, evenif it does.

In other words, even if the class you’ re reading does have a method for the
message being sent, we don't use that one. When looking for asuper
method, we always start with the class' superclass.

Thisis so we can extend a superclass behavior (i.e. technicaly it isour behavior, that
we inherited from a superclass) without having to rewrite all of the method text.

Page 3 of 14

Jas -> Research-> CS-> 00 -> Languages-> Smalltalk -> ReadingSmalltalk (v3)

{Yes, we'retaking about avoiding the pain of having to rewrite all two or three or five
lines inherited from the superclass. And not just because we're exceptionally lazy —er,
| mean, efficient, folks. ;-}. Makes extending and refactoring easier.

For example, we might define someMethod that does the same thing as the method found
in the superclass, and then some:

>>soneMet hod
super soneMet hod.
sel f doSonmeMor eSt uf f

Or, we could define someMethod to do some new stuff, and follow that up
with whatever the superclass does:

>>soneMet hod
sel f doSoneSt uff.
super soneMet hod

Or we could define someMethod to do both:

>>soneMet hod
sel f doSoneSt uff.
super soneMet hod.
sel f doSonmeMor eSt uf f

Page 4 of 14

Jas -> Research-> CS-> 00 -> Languages-> Smalltalk -> ReadingSmalltalk (v3)

3. Syntactic Forms

Thereisone overriding, but previously unfamiliar pair of concepts at work in Smalltalk:

Everything is an object

and
All code takes the single conceptual form:
anObject withSomeMessageSentTolt.

(If you want to continue working in C++, Java, etc. then make very certain you do not
understand what this means. If it startsto make sense to you then by all means, stop
reading Smalltalk, you are in serious danger. More on thislater...).

There are six syntactic forms:

1. Unary message send

obj ect isSent Thi sUnar yMessage

2. Binary message send
obj ect {isSentThi sBinaryOperator} w thThi sObject AsOper and

3. Keyword message send

obj ect isSent Thi sKkeywor dMessage:

wi t hThi sObj ect AsPar anet er .

obj ect isSent: thisCObject and: thisO herObject.

object is: sent this: message with: 4 paraneters: ok.
object is: sent this nessage: with parameters: (1 + 2).
object is: (sent this) nessage: (with) paraneters: (3).

These are alittle bit weirder, until you catch on.
Keyword messages written as C function calls would look like this:

i sSent Thi skeywor dMessage(obj ect, andPar anet er) ;

i sSent And(obj ect, t hi sCbj ect, t hi sQ her Obj ect) ;

i sThi sWt hParanet er s(obj ect, sent, nessage, 4, ok);

i sMessagePar anet er s(obj ect,this(sent),with, (1+2));

i sMessagePar anet er s(obj ect, (this(sent)),(with), (3));

Which is sort of why we refer to keyword messages, descriptively, like this:

i sSent Thi skeywor dvessage:
i sSent : and:
is:this:wth:paraneters:
i S: message: paraneters:

even though we actually write them as shown earlier.

Note that a parameter, or the operand of a binary message, can be either an object,
or the result of sending a message to an object. Just asin C, where a parameter, or
the operand of an operator, can be either { an object:} alitera, aconstant, a
variable, apointer, { or theresult of...} an expression or function call.

Page 5 of 14

Jas -> Research-> CS-> 00 -> Languages-> Smalltalk -> ReadingSmalltalk (v3)

4. A block (ak.a. closure, or block closure)

[thisObject will GetThi sUnaryMessageSent Tol t]
[:somebject| someObject will GetThi sMessage]
[:first :second| thisCbject gets: first and: second]
[:first :second| first gets: thisObject and: second]

A block can be thought of as the only instance of an impromptu class
with no superclass and exactly one method.

{Not actually true, but think of it this way until
you really need to understand otherwise} .

What isthe one method? Depends on the number of parameters:

If a block has then it's only known method is
no parameters [“aparameterless block” | value
one parameter [:x| “aone parameter block”] value:
actualParameter
two parameters [:x :y| “atwo parm block”] value: firstActual value: second
and so on.
For example:

[object nessageSent] val ue

When this block receives the unary value message,
the unary message messageSent
will be sent to the object object.

The above generalizes, to the point that “any code” can occur inside a block:
[some code] val ue

Here, sending the value message to a block
causesthe block to “execute” some code.

And this general form can then be extended through parameterization:
[:one|] any code can be in here] value: object.

The value: object message causes the formal parameter one
to be bound with the actual parameter object,
and the code then “ executes’.

Page 6 of 14

Jas -> Research-> CS-> 00 -> Languages-> Smalltalk -> ReadingSmalltalk (v3)

5. Answer (ak.a return avalue)

Aresul ti ngObj ect

Every method contains at least one of these, even if you can't seeit.
Usually you can seeit, and it isoften the last line of the method. If you
can't seeit, pretend you saw “self asthelast line of the method.

The other use for thisthing isthe “early out”, asin

object isNil ifTrue: [~thisObject].
obj ect get sThi sMessage.
~sel f

This may strike you as an unusual form, asit violates the “single entry/single exit”
maxim from structured programming. Keeping in mind that Smalltalk methods are
typically short, no, make that very short, we ssmply don't care. The forces have
changed - it's hard to get lost reading a method of just afew lines, and if later we
need to make a change that affects all the exit points, well, big dedl.

6. Method definition

When using a browser, you don't actually see this syntactic form, but
when Smalltalk is being described outside its own environment, the
following syntax is used to indicate the definition of a method:

Unary
Cl assNane>>net hodSel ect or
sone(bj ect get sThi sMessage.
someOt her Obj ect get sThi sOt her Message.
Nanswer Yet Anot her Obj ect

This means that the class named “ ClassName”

has a method definition for the unary message
methodSelector

and its definition is as shown.

Binary
Cl assNanme>>+ oper and
i nstanceVari able : = instanceVari abl e + operand.
~sel f

This means that the class named “ ClassName”’

has amethod definition for the binary message
+ operand

and its definition is as shown.

Page 7 of 14

Jas -> Research-> CS-> 00 -> Languages-> Smalltalk -> ReadingSmalltalk (v3)

Keyword
Cl assNane>>keyword: object nmessage: text
Transcri pt
next Put: obj ect
next Put :
next Put Al | : text
cr

This means that the class named “ClassName’ has

amethod definition for the 2 parameter keyword message
keyword:message:

and its definition is as shown.

6. Class Method definition

And now, if you'll allow me to repeat those | ast three forms,

we'll speak of something which is perhaps completely foreign to you -
class methods. There' s no way to trandate this without |osing the meaning,
so you're stuck thinking of these as static methods for now, if that helps.

In abrowser, they’ d look exactly like instance methods, just hanging out
on adifferent tab, or behind aradio button selection, or something like that.

But — when Smalltalk is being described outside its own environment, the
following syntax is used to indicate the definition of a class method:
{these are commonly referred to as definitions on the class side}

Unary
Cl assNane cl ass>>net hodSel ect or
sonmeObj ect getsThi sMessage.
someOt her Obj ect get sThi sOt her Message.
Nanswer Yet Anot her Obj ect

This means that the class named “ ClassName”

has a class method definition for the unary message
methodSelector

and its definition is as shown.

Binary
Cl assNane cl ass>>+ oper and
i nstanceVariable : = instanceVari abl e + operand.
~sel f

This means that the class named “ ClassName”

has a class method definition for the binary message
+ operand

and its definition is as shown.

Page 8 of 14

Jas -> Research-> CS-> 00 -> Languages-> Smalltalk -> ReadingSmalltalk (v3)

Keyword
Cl assNane cl ass>>keyword: object nmessage: text
Transcri pt
next Put: obj ect
next Put :
next Put Al | : text
cr

This means that the class named “ClassName” has

aclass method definition for the 2 parameter keyword message
keyword:message:

and its definition is as shown.

The Smalltalk analog of what you might call a* constructor”
is another example of a class side method:

Classname class>>new
"sdlf basicNew
initidize
; yourself

This meansthat the class named “ ClassName” has

aclass method definition for the unary message
new

and its definition is as shown,

which means the following:

a) make a new instance of whatever you are,
you know, the right amount of memory; etc.
-dl initidly nil.
b) send to said new instance
the unary message initialize
¢) send, to that same said new instance,
the unary message yourself,
and answer the result thereof.
{i.e. return asthe result, because of the *caret.}

Page 9 of 14

Jas -> Research-> CS-> 00 -> Languages-> Smalltalk -> ReadingSmalltalk (v3)

7. Assignment
Ok, I lied - there are seven syntactic forms.

In each of those binary message examples, you see
what appears to be an assignment statement.

It is.
And it's special, for two reasons:

1. Because it might also appear to be a binary message. But it isn't.
2. Because it doesn't follow the otherwise consistent form:

someObject isSentSomeMessage

8. Cascade

Ok, I lied again, twice. There are eight syntactic forms,
and another exception to the so called "consistent form".

In each of those keyword message examples you also see some
semi-colons. The semi-colon is shorthand for

; send this next message to the same object
(the one that received the last message actually sent).

Hence, the line from those examples above

Transcri pt
next Put: obj ect
next Put :
next Put Al | : text
cr

means

send the nextPut: keyword message (and parameter object)
to the object named "Transcript”,

then send another nextPut: message (and parameter ')
to the same object (i.e. Transcript),

then send a nextPutAll: message (and parameter text)
to that same object,

then send the ¢ message
toit.

Finally, return yourself as the result of this method.

(The implied ~self at the end of the method).

Page 10 of 14

Jas -> Research-> CS-> 00 -> Languages-> Smalltalk -> ReadingSmalltalk (v3)

4. Operator Precedence

Everybody's favorite memorization exercise.

How many combinations of precedence and associativity do you know?
How many are you supposed to know?

E.g. when programming in C, one might respond with something like this:

“| havenoidea. But| know thereisatable of all that stuff
on page 19 of the book that is never far from my desk.”
Or

“ Wholey obfuscation, Batman! Any ideawhat this superlative FUBAR means?
— Yes, Robin, just echo *()*(int *)(**)*..." | coolUnixCommand > to english.

Here arethe rules for Smalltalk:

message priority
unary highest

binary

keyword

cascade

assignment lowest
otherwise, strictly left to right.

And yes, you can override this with parentheses, as usual. That'sit!

Ok hold it. You're not getting away with just this.
It doesn't even work. E.g. 3+ 4 * 5would be 35!

Ah, but we do, and it does, and you'reright.
That's just goofy!

Yes, itis. Drivesyou crazy, for about aweek.
And thenit'sjust gone, asin not an issue.

That's it.

Let merepeat - That'sit! That's the entire language.
The only thing left isto learn the library, and the
tricks and idioms of the language.

Now the astute reader is probably thinking something like

Page 11 of 14

Jas -> Research-> CS-> 00 -> Languages-> Smalltalk -> ReadingSmalltalk (v3)

Wait aminute. What happened to unique semantic forms?

Y ou didn't cover control-flow. And you didn't cover variables, types, or

abstract base allocation pointer exemption templates in virtual member functions,
protected static final primitive type object wrapper coercion castings, €etc. etc. etc.

Well, such areader would bewrong. | covered al of that. Ok, ok, you win.
| never said anything about variables. That's because they have no syntactic form,
other than assignment:

instVarl :='"astring'.
and the notation for temporaries:
| aTemp anotherTemp |

Y ou define instanceV ariables by typing their namesinto a special place

in abrowser window, and classVariablesinto a different specia place.
Thereis no syntactic form that goes with it, asit's not part of the “code”.
There are no types, and no ‘built-in" syntactic speciaties like arithmetic,
casting, dereferencing, etc. Thereisallocation, but it is always a message send:

SoneCl assNane new

or
SomeCl assName aMet hodwhi chJust HappensToBeAConst r uct or

and thereis no deallocation. When the last reference to an object ceases
to exist, the object is garbage collected. Y ou couldn't cause a
*(VOID *)(0)
if youwanted to. None of therest of that stuff exists either.
False, you say. You didn't go over the special syntax for control flow.

Yesl did. Thereisn't any. Turns out you don't need such a concept as
control flow littering up your syntax.

Oh don't beridiculous, of course you do. It's completely special.

Sorry to disappoint you. Remember when | said
“think of blocks asif they only have one method”?

Here's where the truth comes out —

Page 12 of 14

Jas -> Research-> CS-> 00 -> Languages-> Smalltalk -> ReadingSmalltalk (v3)

Blocks also respond to afew other messages, like:
[1 whileTrue: []

Which means “send amessage to an object’ .
Literally send the keyword message whileTrue:
(with its parameter (the second block)) to an ebject (the first block).

What do you suppose the first block does when it gets such a message?

The block evaluates itself (sendsitself the value message).
If the result istrue, it sends avalue message to the second block,
and then startsover. Otherwise, it just quits, and answers false.

Of course Booleans also have methods for similar looking messages:

Fal se>>i f True: aBl ock
Ani

Fal se>>i f Fal se: aBl ock
NaBl ock val ue

Falseisaclass, which has methods for these two messages. Since every

object whichisan instance of class Falseisby definition logically false,

thereis nothing to test. It effectively ignores requests to do something
ifTrue:

and always does the thing when asked to do something

ifFalse:.

Another class, True, has the same methods with the outcome reversed.
(Don't think about this too much, it will hurt you. Y ou'll start to think
Smalltalk might be faster than somethink it is. Faster than say, Java?)

Check out the library to see how variations on this simple theme
build up every control structure you've ever thought of - except one:

Nobody ever put a SWITCH/CASE semantic form into the library.

Drives beginners nuts. Later they discover their methods are too short to care about
such athing, and when they seem to want for one, it means the design is not taking
advantage of polymorphism the way it should. So they’ll fix that instead.

Now, one last piece of syntactic sugar to deal with:

" Thi sl sAStri ng'
#Thi sl sASynbol

These behave pretty much the same, except that the latter is guaranteed to be a Singleton,
with a unigue hash value, hence faster comparisons— useful in table lookups, and such.

Page 13 of 14

Jas -> Research-> CS-> 00 -> Languages-> Smalltalk -> ReadingSmalltalk (v3)

That’s It!

Hope this helpsin your attemptsto read Smalltalk.

But be careful! The minute you get an inkling of what this al
means, you'll find it very difficult to continue to use whatever
language you're using now... bar none.

Remember - you've beenwarned! ;-)

What next?

To explore Smalltalk further, you should:

Read:

Install:

Read:

Master:

The sequel. Ok, ok, ok — you’ velooked, and can’t find it.

Did you try something obvious (e.g. “Writing Smalltalk”?).
Really? Hmmm, maybeit isn't there. Maybeitisn't written yet.
Tried agitating? Flood the media with demands for more Smalltalk!
Might work. Or prod the author directly (be $ubtle, of course ;-).

Dolphin Smalltalk - from Object Arts. Absolutely brilliant piece of work.
Play with it, try the examples, read the education center material.
(It'sal free - until you're addicted)

comp.lang.smalltalk (the news group)
Smalltalk 80 — The Language [89 Goldberg & Robson— ISBN: 0-201-13688-0]
Smalltalk — The Language [95 Smith— ISBN: 0-8053-0908-X]
Smalltalk — Developers Guide [95 Howard — ISBN: 0-13-442526-X)]
Smalltalk, Objects and Design [96 Liu — ISBN: 1-58348-490-6]
Advanced Smalltalk [97 Pletzke — ISBN: 0-471-16350-3]
Art & Science of Smalltalk [95 Lewis]
Smalltalk: Best Practice Patterns [97 Beck — ISBN: 0-13-476904-X]
Guide to Better Smalltalk [99 Beck — ISBN: 0-521-64437-2]
Introduction to VW Smalltalk [04 Tomek]
Dolphin Smalltalk Companion [01 Bracht — ISBN: 0-201-737936]
Design Patterns [95 GoF ISBN: 0-20163361-2]
& the Smalltalk Companion [98 Alpert, et a - ISBN: 0-201-18462-1]
POSA [96 Buschman et al — ISBN: 0-471-95869-7]
PLOP series [95-98 Coplien, et al - ISBN: 0-201-60734-4]
Refactoring [99 Roberts], Refactoring [99 Fowler], Refactoring [04 Kerievsky]
Domain Driven Design [04 Evans— ISBN: 0-321-12521-5]
AND any other Smalltalk books at your favorite bookstore
AND See also: [Smalltalk Books Online > http://www.iam.unibe.ch/~ducasse/FreeBooks |

VisuaWorks - from Cincom Systems. Absolutely incredible tool set.

The flagship of the Smalltalk industry, power and stability which defies belief.
An immense class library (a.k.a. work aready done for you).

(The non-commercial version of VisualWorksis also free).

Page 14 of 14

http://www.iam.unibe.ch/~ducasse/FreeBooks

