
Jas -> Research -> CS -> OO -> Languages -> Smalltalk -> ReadingSmalltalk (v3)

Page 1 of 14

Reading Smalltalk

My presentation is based on the way I tackle any language:

1. Examine the character set and tokens
2. Examine the reserved words
3. Examine each unique syntactic form
4. Examine the operator precedence rules
5. Examine each unique semantic form
6. Examine the libraries

So here goes...

1. Character set and tokens

Standard character set, with twelve special characters: #:^.'|";()[]

The tokens are: {identifier} {number} {string} {comment}

 {binaryOperator} {keyword} {specialToken}

Identifiers are the same as you'd expect, except that we use
 capitalLettersLikeThis, rather_than_underscores.

Numbers are also as you'd expect.

'Strings' 'are enclosed in single quotes'.

"Comments" "are enclosed in double quotes".

Binary operators are composed of one or two characters.

The characters which can form a {binaryOperator} vary a little
between implementations, but for the purpose of reading
Smalltalk,
you can assume that any non-alphaNumeric character which is not
in the above list of {special characters} forms a {binaryOperator}.
For example:

+ is a {binaryOperator}
++ is a {binaryOperator}
?* is a {binaryOperator}
-> is a {binaryOperator}

http://SmalltalkNow.org
mailTo:jas@cruzio.com

Jas -> Research -> CS -> OO -> Languages -> Smalltalk -> ReadingSmalltalk (v3)

Page 2 of 14

A keyword: is just an identifier with a colon on the end of it, e.g.
 anyIdentifierLikeThis: is a {keyword}.

In Smalltalk, a keyword is only special in the sense that
 it forms a “keyword message”. It’s a distinct kind of token
(different from an identifier or a string), but its meaning as
an individual token is not special. Some languages have
special {keywords} like BEGIN and END, with built-in
meanings - a Smalltalk {keyword} is not this sort of thing.
In Smalltalk, {keyword} is strictly a syntactic form.

SpecialTokens are just the special characters, used as
separators for parsing the language.

$ dollarSign Each occurrence precedes (one) character,
 any $l $i $t $e $r $a $l character, ($$ too)
 i.e. next character is to be taken literally.
pound Begins an arbitrary #symbol,
 or (if attached to a left parenthesis)
 begins a #(literal array).
: colon Ends a keyword:
 or begins :aBlockFormalParameter.
^ caret ^AnswerThisObject (i.e. return this result).
. period Statement separator.
 Between all statements.
 But (for last statement of a method
 or: [the last statement of a block]
) ifTrue: [period isOptional]
' single quote ‘delimits a string’
| vertical stroke | delimits temporary variable definitions |
 and / or
 [:block :formal :parameters| …]
“ double quote “ delimits a comment ”
; semicolon Begins a cascading message send, like this:
 receiver firstMessage
 ; firstCascadeMessage
 ; all4SentToSameReceiver
 ; thirdCascadeMessage.
(openParenthesis Begins an expression.
) closeParenthesis Ends an expression.
[openSquareBracket Begins a block closure.
] closeSquareBracket Ends a block closure.

Jas -> Research -> CS -> OO -> Languages -> Smalltalk -> ReadingSmalltalk (v3)

Page 3 of 14

2. Reserved Words

There are five reserved words: nil false true self super.
These are all reserved because the compiler, optimizer, and VM know about them.

nil is the value of any variable which hasn't yet been initialed.

It is also the value of any variable whose initial value has been
forgotten. It should be used to mean

“I have no idea”
“Has never had a value”, or
“If it ever had a value, someone has since asked
 that we behave as if it never had one;
 therefore - I have no idea”.

It is sometimes incorrectly used for things that
should be NullObjects or ExceptionalValues.

 true \
 and are singleton instances of the classes True and False, respectively.
false /

self refers to the object whose class contains the method you are

presently reading, when you are reading one and encounter the
word self. BUT IF the object's class has no such method, you

 must be reading the object’s nearest superclass which does have
such a method.

super refers to the same object as self.

 (Read that last sentence 100 times, until you accept it as fact,
 before moving on.)

So – why would we want to have two names for the same thing?
We wouldn’t actually – the two names describe two different search paths.
(A bit hard to follow, until you get used to it). It works like this:

super is the same object as self, but when you try to figure out which
method the object will execute in response to a message being sent to super,
pretend the class you’re reading doesn’t have such a method, even if it does.

In other words, even if the class you’re reading does have a method for the
message being sent, we don't use that one. When looking for a super
method, we always start with the class’ superclass.

This is so we can extend a superclass' behavior (i.e. technically it is our behavior, that
we inherited from a superclass) without having to rewrite all of the method text.

Jas -> Research -> CS -> OO -> Languages -> Smalltalk -> ReadingSmalltalk (v3)

Page 4 of 14

{Yes, we’re talking about avoiding the pain of having to rewrite all two or three or five
lines inherited from the superclass. And not just because we’re exceptionally lazy –er,
I mean, efficient, folks. ;-}. Makes extending and refactoring easier.

For example, we might define someMethod that does the same thing as the method found
in the superclass, and then some:

>>someMethod
 super someMethod.
 self doSomeMoreStuff

Or, we could define someMethod to do some new stuff, and follow that up
with whatever the superclass does:

>>someMethod
 self doSomeStuff.
 super someMethod

Or we could define someMethod to do both:

>>someMethod
 self doSomeStuff.
 super someMethod.
 self doSomeMoreStuff

Jas -> Research -> CS -> OO -> Languages -> Smalltalk -> ReadingSmalltalk (v3)

Page 5 of 14

3. Syntactic Forms

There is one overriding, but previously unfamiliar pair of concepts at work in Smalltalk:

Everything is an object
and

All code takes the single conceptual form:
anObject withSomeMessageSentToIt.

(If you want to continue working in C++, Java, etc. then make very certain you do not
 understand what this means. If it starts to make sense to you then by all means, stop
 reading Smalltalk, you are in serious danger. More on this later...).

There are six syntactic forms:

1. Unary message send

 object isSentThisUnaryMessage

2. Binary message send

 object {isSentThisBinaryOperator} withThisObjectAsOperand

3. Keyword message send

 object isSentThisKeywordMessage:

withThisObjectAsParameter.
 object isSent: thisObject and: thisOtherObject.
 object is: sent this: message with: 4 parameters: ok.
 object is: sent this message: with parameters: (1 + 2).
 object is: (sent this) message: (with) parameters: (3).

These are a little bit weirder, until you catch on.
Keyword messages written as C function calls would look like this:

 isSentThisKeywordMessage(object,andParameter);
 isSentAnd(object,thisObject,thisOtherObject);
 isThisWithParameters(object,sent,message,4,ok);
 isMessageParameters(object,this(sent),with,(1+2));
 isMessageParameters(object,(this(sent)),(with),(3));

Which is sort of why we refer to keyword messages, descriptively, like this:

 isSentThisKeywordMessage:
 isSent:and:
 is:this:with:parameters:
 is:message:parameters:

even though we actually write them as shown earlier.

Note that a parameter, or the operand of a binary message, can be either an object,
or the result of sending a message to an object. Just as in C, where a parameter, or
the operand of an operator, can be either {an object:} a literal, a constant, a
variable, a pointer, {or the result of...} an expression or function call.

Jas -> Research -> CS -> OO -> Languages -> Smalltalk -> ReadingSmalltalk (v3)

Page 6 of 14

4. A block (a.k.a. closure, or block closure)

 [thisObject willGetThisUnaryMessageSentToIt]
 [:someObject| someObject willGetThisMessage]
 [:first :second| thisObject gets: first and: second]
 [:first :second| first gets: thisObject and: second]

A block can be thought of as the only instance of an impromptu class
with no superclass and exactly one method.

{Not actually true, but think of it this way until
 you really need to understand otherwise}.

What is the one method? Depends on the number of parameters:

If a block has then it's only known method is
no parameters [“a parameterless block”] value
one parameter [:x| “a one parameter block”] value:

actualParameter
two parameters [:x :y| “a two parm block”] value: firstActual value: second

 and so on.

For example:

 [object messageSent] value

 When this block receives the unary value message,
 the unary message messageSent
 will be sent to the object object.

The above generalizes, to the point that “any code” can occur inside a block:

 [some code] value

 Here, sending the value message to a block
 causes the block to “execute” some code.

And this general form can then be extended through parameterization:

 [:one| any code can be in here] value: object.

 The value: object message causes the formal parameter one
 to be bound with the actual parameter object,
 and the code then “executes”.

Jas -> Research -> CS -> OO -> Languages -> Smalltalk -> ReadingSmalltalk (v3)

Page 7 of 14

5. Answer (a.k.a. return a value)

 ^resultingObject

Every method contains at least one of these, even if you can't see it.
Usually you can see it, and it is often the last line of the method. If you
can't see it, pretend you saw ^self as the last line of the method.

The other use for this thing is the “early out”, as in

 object isNil ifTrue: [^thisObject].
 object getsThisMessage.
 ^self

This may strike you as an unusual form, as it violates the “single entry/single exit”
maxim from structured programming. Keeping in mind that Smalltalk methods are
typically short, no, make that very short, we simply don't care. The forces have
changed - it's hard to get lost reading a method of just a few lines, and if later we
need to make a change that affects all the exit points, well, big deal.

6. Method definition

When using a browser, you don't actually see this syntactic form, but
when Smalltalk is being described outside its own environment, the
following syntax is used to indicate the definition of a method:

Unary
 ClassName>>methodSelector
 someObject getsThisMessage.
 someOtherObject getsThisOtherMessage.
 ^answerYetAnotherObject

 This means that the class named “ClassName”
 has a method definition for the unary message
 methodSelector
 and its definition is as shown.

Binary
 ClassName>>+ operand
 instanceVariable := instanceVariable + operand.
 ^self

 This means that the class named “ClassName”
 has a method definition for the binary message
 + operand
 and its definition is as shown.

Jas -> Research -> CS -> OO -> Languages -> Smalltalk -> ReadingSmalltalk (v3)

Page 8 of 14

Keyword
 ClassName>>keyword: object message: text
 Transcript
 nextPut: object
 ; nextPut: ' '
 ; nextPutAll: text
 ; cr

 This means that the class named “ClassName” has
 a method definition for the 2 parameter keyword message
 keyword:message:
 and its definition is as shown.

6. Class Method definition

And now, if you’ll allow me to repeat those last three forms,
we’ll speak of something which is perhaps completely foreign to you -
class methods. There’s no way to translate this without losing the meaning,
so you’re stuck thinking of these as static methods for now, if that helps.

In a browser, they’d look exactly like instance methods, just hanging out
on a different tab, or behind a radio button selection, or something like that.

But – when Smalltalk is being described outside its own environment, the
following syntax is used to indicate the definition of a class method:
{these are commonly referred to as definitions on the class side}

Unary
 ClassName class>>methodSelector
 someObject getsThisMessage.
 someOtherObject getsThisOtherMessage.
 ^answerYetAnotherObject

 This means that the class named “ClassName”
 has a class method definition for the unary message
 methodSelector
 and its definition is as shown.

Binary
 ClassName class>>+ operand
 instanceVariable := instanceVariable + operand.
 ^self

 This means that the class named “ClassName”
 has a class method definition for the binary message
 + operand
 and its definition is as shown.

Jas -> Research -> CS -> OO -> Languages -> Smalltalk -> ReadingSmalltalk (v3)

Page 9 of 14

Keyword
 ClassName class>>keyword: object message: text
 Transcript
 nextPut: object
 ; nextPut: ' '
 ; nextPutAll: text
 ; cr

 This means that the class named “ClassName” has
 a class method definition for the 2 parameter keyword message
 keyword:message:
 and its definition is as shown.

The Smalltalk analog of what you might call a “constructor”
is another example of a class side method:

 Classname class>>new
 ^self basicNew
 initialize
 ; yourself

 This means that the class named “ClassName” has
 a class method definition for the unary message
 new
 and its definition is as shown,
 which means the following:

 a) make a new instance of whatever you are,
 you know, the right amount of memory; etc.
 - all initially nil.
 b) send to said new instance
 the unary message initialize
 c) send, to that same said new instance,
 the unary message yourself,
 and answer the result thereof.
 {i.e. return as the result, because of the ^caret.}

Jas -> Research -> CS -> OO -> Languages -> Smalltalk -> ReadingSmalltalk (v3)

Page 10 of 14

7. Assignment

Ok, I lied - there are seven syntactic forms.

In each of those binary message examples, you see
what appears to be an assignment statement.

 It is.

And it's special, for two reasons:

 1. Because it might also appear to be a binary message. But it isn't.
 2. Because it doesn't follow the otherwise consistent form:

 someObject isSentSomeMessage

8. Cascade

Ok, I lied again, twice. There are eight syntactic forms,
and another exception to the so called "consistent form".

In each of those keyword message examples you also see some
semi-colons. The semi-colon is shorthand for

 ; send this next message to the same object
 (the one that received the last message actually sent).

Hence, the line from those examples above

 Transcript
 nextPut: object
 ; nextPut: ' '
 ; nextPutAll: text
 ; cr

means
 send the nextPut: keyword message (and parameter object)
 to the object named "Transcript",
 then send another nextPut: message (and parameter ' ')
 to the same object (i.e. Transcript),
 then send a nextPutAll: message (and parameter text)
 to that same object,
 then send the cr message
 to it.
 Finally, return yourself as the result of this method.
 (The implied ^self at the end of the method).

Jas -> Research -> CS -> OO -> Languages -> Smalltalk -> ReadingSmalltalk (v3)

Page 11 of 14

4. Operator Precedence

Everybody's favorite memorization exercise.

How many combinations of precedence and associativity do you know?
How many are you supposed to know?

E.g. when programming in C, one might respond with something like this:

 “ I have no idea. But I know there is a table of all that stuff
 on page 19 of the book that is never far from my desk.”
Or
 “ Wholey obfuscation, Batman! Any idea what this superlative FUBAR means?

– Yes, Robin, just echo ‘()*(int *)(**)*…’ | coolUnixCommand > to english.
“

Here are the rules for Smalltalk:

 message priority
 unary highest
 binary
 keyword
 cascade
 assignment lowest

 otherwise, strictly left to right.

And yes, you can override this with parentheses, as usual. That's it!

Ok hold it. You're not getting away with just this.
It doesn't even work. E.g. 3 + 4 * 5 would be 35!?!

Ah, but we do, and it does, and you're right.

That's just goofy!

Yes, it is. Drives you crazy, for about a week.
And then it's just gone, as in not an issue.

That's it.

Let me repeat - That's it! That's the entire language.
The only thing left is to learn the library, and the
tricks and idioms of the language.

Now the astute reader is probably thinking something like

Jas -> Research -> CS -> OO -> Languages -> Smalltalk -> ReadingSmalltalk (v3)

Page 12 of 14

Wait a minute. What happened to unique semantic forms?
You didn't cover control-flow. And you didn't cover variables, types, or
abstract base allocation pointer exemption templates in virtual member functions,
protected static final primitive type object wrapper coercion castings, etc. etc. etc.

Well, such a reader would be wrong. I covered all of that. Ok, ok, you win.
I never said anything about variables. That's because they have no syntactic form,
other than assignment:

 instVar1 := 'aString'.

and the notation for temporaries:

 | aTemp anotherTemp |

You define instanceVariables by typing their names into a special place
 in a browser window, and classVariables into a different special place.
There is no syntactic form that goes with it, as it's not part of the “code”.
There are no types, and no ‘built-in’ syntactic specialties like arithmetic,
casting, dereferencing, etc. There is allocation, but it is always a message send:

SomeClassName new

or
SomeClassName aMethodWhichJustHappensToBeAConstructor

and there is no deallocation. When the last reference to an object ceases
to exist, the object is garbage collected. You couldn't cause a
 *(VOID *)(0)
 if you wanted to. None of the rest of that stuff exists either.

False, you say. You didn't go over the special syntax for control flow.

Yes I did. There isn't any. Turns out you don't need such a concept as
control flow littering up your syntax.

Oh don't be ridiculous, of course you do. It's completely special.

Sorry to disappoint you. Remember when I said
“think of blocks as if they only have one method”?

Here's where the truth comes out –

Jas -> Research -> CS -> OO -> Languages -> Smalltalk -> ReadingSmalltalk (v3)

Page 13 of 14

Blocks also respond to a few other messages, like:

 [] whileTrue: []

 Which means “send a message to an object”.
 Literally send the keyword message whileTrue:
 (with its parameter (the second block)) to an object (the first block).

 What do you suppose the first block does when it gets such a message?

 The block evaluates itself (sends itself the value message).
 If the result is true, it sends a value message to the second block,
 and then starts over. Otherwise, it just quits, and answers false.

Of course Booleans also have methods for similar looking messages:

 False>>ifTrue: aBlock
 ^nil

 False>>ifFalse: aBlock
 ^aBlock value

 False is a class, which has methods for these two messages. Since every
 object which is an instance of class False is by definition logically false,
 there is nothing to test. It effectively ignores requests to do something

 ifTrue:
 and always does the thing when asked to do something
 ifFalse:.

 Another class, True, has the same methods with the outcome reversed.
 (Don't think about this too much, it will hurt you. You'll start to think
 Smalltalk might be faster than some think it is. Faster than say, Java?)

Check out the library to see how variations on this simple theme
build up every control structure you've ever thought of - except one:

 Nobody ever put a SWITCH/CASE semantic form into the library.

Drives beginners nuts. Later they discover their methods are too short to care about
such a thing, and when they seem to want for one, it means the design is not taking
advantage of polymorphism the way it should. So they’ll fix that instead.

Now, one last piece of syntactic sugar to deal with:

 'ThisIsAString'
 #ThisIsASymbol

These behave pretty much the same, except that the latter is guaranteed to be a Singleton,
with a unique hash value, hence faster comparisons – useful in table lookups, and such.

Jas -> Research -> CS -> OO -> Languages -> Smalltalk -> ReadingSmalltalk (v3)

Page 14 of 14

That’s It!

Hope this helps in your attempts to read Smalltalk.

But be careful! The minute you get an inkling of what this all
means, you'll find it very difficult to continue to use whatever
language you're using now... bar none.

Remember - you’ve been warned! ;-)

What next?

To explore Smalltalk further, you should:

Read: The sequel. Ok, ok, ok – you’ve looked, and can’t find it.
 Did you try something obvious (e.g. “Writing Smalltalk”?).
 Really? Hmmm, maybe it isn’t there. Maybe it isn’t written yet.

Tried agitating? Flood the media with demands for more Smalltalk!
 Might work. Or prod the author directly (be $ubtle, of course ;-).

Install: Dolphin Smalltalk - from Object Arts. Absolutely brilliant piece of work.
 Play with it, try the examples, read the education center material.
 (It's all free - until you're addicted)

Read: comp.lang.smalltalk (the news group)

Smalltalk 80 – The Language [89 Goldberg & Robson – ISBN: 0-201-13688-0]
Smalltalk – The Language [95 Smith – ISBN: 0-8053-0908-X]
Smalltalk – Developers Guide [95 Howard – ISBN: 0-13-442526-X)]
Smalltalk, Objects and Design [96 Liu – ISBN: 1-58348-490-6]
Advanced Smalltalk [97 Pletzke – ISBN: 0-471-16350-3]
Art & Science of Smalltalk [95 Lewis]
Smalltalk: Best Practice Patterns [97 Beck – ISBN: 0-13-476904-X]
Guide to Better Smalltalk [99 Beck – ISBN: 0-521-64437-2]
Introduction to VW Smalltalk [04 Tomek]
Dolphin Smalltalk Companion [01 Bracht – ISBN: 0-201-737936]
Design Patterns [95 GoF ISBN: 0-20163361-2]
 & the Smalltalk Companion [98 Alpert, et al - ISBN: 0-201-18462-1]
PoSA [96 Buschman et al – ISBN: 0-471-95869-7]
PLOP series [95-98 Coplien, et al - ISBN: 0-201-60734-4]
Refactoring [99 Roberts], Refactoring [99 Fowler], Refactoring [04 Kerievsky]
Domain Driven Design [04 Evans – ISBN: 0-321-12521-5]
AND any other Smalltalk books at your favorite bookstore
AND See also: [Smalltalk Books Online > http://www.iam.unibe.ch/~ducasse/FreeBooks]

Master: VisualWorks - from Cincom Systems. Absolutely incredible toolset.
 The flagship of the Smalltalk industry, power and stability which defies belief.
 An immense class library (a.k.a. work already done for you).
 (The non-commercial version of VisualWorks is also free).

http://www.iam.unibe.ch/~ducasse/FreeBooks

